Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Rep ; 28: 101155, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34712849

RESUMO

3'-phosphoadenosine 5'-phosphosulfate (PAPS) is synthesized in two steps by PAPS synthase (PAPSS). PAPSS is comprised of ATP sulfurylase (ATPS) and APS kinase (APSK) domain activities. ATPS combines inorganic sulfate with α-phosphoryl of ATP to form adenosine 5'-phosphosulfate (APS) and PPi. In the second step APS is phosphorylated at 3'-OH using another mole of ATP to form PAPS and ADP catalyzed by APSK. The transfer of gamma-phosphoryl from ATP onto 3'-OH requires Mg2 + and purported to involve residues D87GD89N. We report that mutation of either aspartic residue to alanine completely abolishes APSK activity in PAPS formation. PAPSS is an, unique enzyme that binds to four different nucleotides: ATP and APS on both ATPS and APSK domains and ADP and PAPS exclusively on the APSK domain. The thermodynamic binding and the catalytic interplay must be very tightly controlled to form the end-product PAPS in the forward direction. Though APS binds to ATPS and APSK, in ATPS domain, the APS is a product and for APSK it is a substrate. DGDN motif is absent in ATPS and present in APSK. Mutation of D87 and D89 did not hamper ATPS activity however abolished APSK activity severely. Thus, D87GD89N region is required for stabilization of Mg2+-ATP, in the process of splitting the γ-phosphoryl from ATP and transfer of γ-phosphoryl onto 3'-OH of APS to form PAPS a process that cannot be achieved by ATPS domain. In addition, gamma32P-ATP, trapped phosphoryl enzyme intermediate more with PAPSS2 than with PAPSS1. This suggests inherent active site residues could control novel catalytic differences. Molecular docking studies of hPAPSS1with ATP + Mg2+ and APS of wild type and mutants supports the experimental results.

2.
J Biol Chem ; 296: 100224, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33361160

RESUMO

The initial activation step in the gating of ubiquitously expressed Orai1 calcium (Ca2+) ion channels represents the activation of the Ca2+-sensor protein STIM1 upon Ca2+ store depletion of the endoplasmic reticulum. Previous studies using constitutively active Orai1 mutants gave rise to, but did not directly test, the hypothesis that STIM1-mediated Orai1 pore opening is accompanied by a global conformational change of all Orai transmembrane domain (TM) helices within the channel complex. We prove that a local conformational change spreads omnidirectionally within the Orai1 complex. Our results demonstrate that these locally induced global, opening-permissive TM motions are indispensable for pore opening and require clearance of a series of Orai1 gating checkpoints. We discovered these gating checkpoints in the middle and cytosolic extended TM domain regions. Our findings are based on a library of double point mutants that contain each one loss-of-function with one gain-of-function point mutation in a series of possible combinations. We demonstrated that an array of loss-of-function mutations are dominant over most gain-of-function mutations within the same as well as of an adjacent Orai subunit. We further identified inter- and intramolecular salt-bridge interactions of Orai subunits as a core element of an opening-permissive Orai channel architecture. Collectively, clearance and synergistic action of all these gating checkpoints are required to allow STIM1 coupling and Orai1 pore opening. Our results unravel novel insights in the preconditions of the unique fingerprint of CRAC channel activation, provide a valuable source for future structural resolutions, and help to understand the molecular basis of disease-causing mutations.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Ativação do Canal Iônico/genética , Proteínas de Neoplasias/química , Proteína ORAI1/química , Molécula 1 de Interação Estromal/química , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Regulação da Expressão Gênica , Genes Reporter , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Lipossomos/química , Lipossomos/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Simulação de Dinâmica Molecular , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Técnicas de Patch-Clamp , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
3.
Molecules ; 25(9)2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32397647

RESUMO

Hexameric arginine repressor, ArgR, is the feedback regulator of bacterial L-arginine regulons, and sensor of L-arg that controls transcription of genes for its synthesis and catabolism. Although ArgR function, as well as its secondary, tertiary, and quaternary structures, is essentially the same in E. coli and B. subtilis, the two proteins differ significantly in sequence, including residues implicated in the response to L-arg. Molecular dynamics simulations are used here to evaluate the behavior of intact B. subtilis ArgR with and without L-arg, and are compared with prior MD results for a domain fragment of E. coli ArgR. Relative to its crystal structure, B. subtilis ArgR in absence of L-arg undergoes a large-scale rotational shift of its trimeric subassemblies that is very similar to that observed in the E. coli protein, but the residues driving rotation have distinct secondary and tertiary structural locations, and a key residue that drives rotation in E. coli is missing in B. subtilis. The similarity of trimer rotation despite different driving residues suggests that a rotational shift between trimers is integral to ArgR function. This conclusion is supported by phylogenetic analysis of distant ArgR homologs reported here that indicates at least three major groups characterized by distinct sequence motifs but predicted to undergo a common rotational transition. The dynamic consequences of L-arg binding for transcriptional activation of intact ArgR are evaluated here for the first time in two-microsecond simulations of B. subtilis ArgR. L-arg binding to intact B. subtilis ArgR causes a significant further shift in the angle of rotation between trimers that causes the N-terminal DNA-binding domains lose their interactions with the C-terminal domains, and is likely the first step toward adopting DNA-binding-competent conformations. The results aid interpretation of crystal structures of ArgR and ArgR-DNA complexes.


Assuntos
Arginina/química , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Regulon/genética , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Arginina/metabolismo , Bacillus subtilis/química , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Entropia , Escherichia coli/química , Escherichia coli/genética , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Filogenia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios Proteicos , Proteínas Repressoras/genética , Alinhamento de Sequência
4.
Sci Signal ; 12(608)2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31744929

RESUMO

The stromal interaction molecule 1 (STIM1) has two important functions, Ca2+ sensing within the endoplasmic reticulum and activation of the store-operated Ca2+ channel Orai1, enabling plasma-membrane Ca2+ influx. We combined molecular dynamics (MD) simulations with live-cell recordings and determined the sequential Ca2+-dependent conformations of the luminal STIM1 domain upon activation. Furthermore, we identified the residues within the canonical and noncanonical EF-hand domains that can bind to multiple Ca2+ ions. In MD simulations, a single Ca2+ ion was sufficient to stabilize the luminal STIM1 complex. Ca2+ store depletion destabilized the two EF hands, triggering disassembly of the hydrophobic cleft that they form together with the stable SAM domain. Point mutations associated with tubular aggregate myopathy or cancer that targeted the canonical EF hand, and the hydrophobic cleft yielded constitutively clustered STIM1, which was associated with activation of Ca2+ entry through Orai1 channels. On the basis of our results, we present a model of STIM1 Ca2+ binding and refine the currently known initial steps of STIM1 activation on a molecular level.


Assuntos
Cálcio/metabolismo , Simulação de Dinâmica Molecular , Proteínas de Neoplasias/química , Domínios Proteicos , Desdobramento de Proteína , Molécula 1 de Interação Estromal/química , Algoritmos , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Motivos EF Hand , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Microscopia Confocal , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/química , Proteína ORAI1/metabolismo , Ratos , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
5.
Semin Cell Dev Biol ; 94: 50-58, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30639326

RESUMO

Highly Ca2+ selective channels trigger a large variety of cellular signaling processes in both excitable and non-excitable cells. Among these channels, the Orai channel is unique in its activation mechanism and its structure. It mediates Ca2+ influx into the cytosol with an extremely small unitary conductance over longer time-scales, ranging from minutes up to several hours. Its activation is regulated by the Ca2+ content of the endoplasmic reticulum (ER). Depletion of luminal [Ca2+]ER is sensed by the STIM1 single transmembrane protein that directly binds and gates the Orai1 channel. Orai mediated Ca2+ influx increases cytosolic Ca2+ from 100 nM up to low micromolar range close to the pore and thereby forms Ca2+ microdomains. Hence, these features of the Orai channel can trigger long-term signaling processes without affecting the overall Ca2+ content of a single living cell. Here we focus on the architecture and dynamic conformational changes within the Orai channel. This review summarizes current achievements of molecular dynamics simulations in combination with live cell recordings to address gating and permeation of the Orai channel with molecular precision.


Assuntos
Cálcio/metabolismo , Simulação de Dinâmica Molecular , Proteína ORAI1/metabolismo , Humanos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/química , Molécula 1 de Interação Estromal/química , Molécula 1 de Interação Estromal/metabolismo
6.
J Biol Chem ; 293(39): 15043-15054, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30054276

RESUMO

Although EcoR124 is one of the better-studied Type I restriction-modification enzymes, it still presents many challenges to detailed analyses because of its structural and functional complexity and missing structural information. In all available structures of its motor subunit HsdR, responsible for DNA translocation and cleavage, a large part of the HsdR C terminus remains unresolved. The crystal structure of the C terminus of HsdR, obtained with a crystallization chaperone in the form of pHluorin fusion and refined to 2.45 Å, revealed that this part of the protein forms an independent domain with its own hydrophobic core and displays a unique α-helical fold. The full-length HsdR model, based on the WT structure and the C-terminal domain determined here, disclosed a proposed DNA-binding groove lined by positively charged residues. In vivo and in vitro assays with a C-terminal deletion mutant of HsdR supported the idea that this domain is involved in complex assembly and DNA binding. Conserved residues identified through sequence analysis of the C-terminal domain may play a key role in protein-protein and protein-DNA interactions. We conclude that the motor subunit of EcoR124 comprises five structural and functional domains, with the fifth, the C-terminal domain, revealing a unique fold characterized by four conserved motifs in the IC subfamily of Type I restriction-modification systems. In summary, the structural and biochemical results reported here support a model in which the C-terminal domain of the motor subunit HsdR of the endonuclease EcoR124 is involved in complex assembly and DNA binding.


Assuntos
Proteínas de Ligação a DNA/química , Desoxirribonucleases de Sítio Específico do Tipo I/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Sequência de Aminoácidos , Fenômenos Biofísicos , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Desoxirribonucleases de Sítio Específico do Tipo I/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Conformação Proteica , Domínios Proteicos/genética , Subunidades Proteicas/química , Subunidades Proteicas/genética
7.
J Mol Model ; 24(7): 176, 2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29943199

RESUMO

Type I restriction-modification enzymes differ significantly from the type II enzymes commonly used as molecular biology reagents. On hemi-methylated DNAs type I enzymes like the EcoR124I restriction-modification complex act as conventional adenine methylases at their specific target sequences, but unmethylated targets induce them to translocate thousands of base pairs through the stationary enzyme before cleaving distant sites nonspecifically. EcoR124I is a superfamily 2 DEAD-box helicase like eukaryotic double-strand DNA translocase Rad54, with two RecA-like helicase domains and seven characteristic sequence motifs that are implicated in translocation. In Rad54 a so-called extended region adjacent to motif III is involved in ATPase activity. Although the EcoR124I extended region bears sequence and structural similarities with Rad54, it does not influence ATPase or restriction activity as shown in this work, but mutagenesis of the conserved glycine residue of its motif III does alter ATPase and DNA cleavage activity. Through the lens of molecular dynamics, a full model of HsdR of EcoR124I based on available crystal structures allowed interpretation of functional effects of mutants in motif III and its extended region. The results indicate that the conserved glycine residue of motif III has a role in positioning the two helicase domains.


Assuntos
DNA Helicases/química , Desoxirribonucleases de Sítio Específico do Tipo I/química , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/química , Trifosfato de Adenosina/química , Sequência de Aminoácidos , DNA Helicases/genética , DNA Helicases/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo I/genética , Desoxirribonucleases de Sítio Específico do Tipo I/metabolismo , Ativação Enzimática , Hidrólise , Simulação de Dinâmica Molecular , Complexos Multienzimáticos/química , Mutação , Análise de Componente Principal , Conformação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
8.
J Biol Chem ; 293(4): 1271-1285, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29237733

RESUMO

Ca2+ release-activated Ca2+ (CRAC) channels constitute the major Ca2+ entry pathway into the cell. They are fully reconstituted via intermembrane coupling of the Ca2+-selective Orai channel and the Ca2+-sensing protein STIM1. In addition to the Orai C terminus, the main coupling site for STIM1, the Orai N terminus is indispensable for Orai channel gating. Although the extended transmembrane Orai N-terminal region (Orai1 amino acids 73-91; Orai3 amino acids 48-65) is fully conserved in the Orai1 and Orai3 isoforms, Orai3 tolerates larger N-terminal truncations than Orai1 in retaining store-operated activation. In an attempt to uncover the reason for these isoform-specific structural requirements, we analyzed a series of Orai mutants and chimeras. We discovered that it was not the N termini, but the loop2 regions connecting TM2 and TM3 of Orai1 and Orai3 that featured distinct properties, which explained the different, isoform-specific behavior of Orai N-truncation mutants. Atomic force microscopy studies and MD simulations suggested that the remaining N-terminal portion in the non-functional Orai1 N-truncation mutants formed new, inhibitory interactions with the Orai1-loop2 regions, but not with Orai3-loop2. Such a loop2 swap restored activation of the N-truncation Orai1 mutants. To mimic interactions between the N terminus and loop2 in full-length Orai1 channels, we induced close proximity of the N terminus and loop2 via cysteine cross-linking, which actually caused significant inhibition of STIM1-mediated Orai currents. In aggregate, maintenance of Orai activation required not only the conserved N-terminal region but also permissive communication of the Orai N terminus and loop2 in an isoform-specific manner.


Assuntos
Canais de Cálcio/química , Proteína ORAI1/química , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Células HEK293 , Humanos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Domínios Proteicos , Estrutura Secundária de Proteína , Molécula 1 de Interação Estromal/química , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
9.
Sci Signal ; 10(507)2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29184031

RESUMO

The channel Orai1 requires Ca2+ store depletion in the endoplasmic reticulum and an interaction with the Ca2+ sensor STIM1 to mediate Ca2+ signaling. Alterations in Orai1-mediated Ca2+ influx have been linked to several pathological conditions including immunodeficiency, tubular myopathy, and cancer. We screened large-scale cancer genomics data sets for dysfunctional Orai1 mutants. Five of the identified Orai1 mutations resulted in constitutively active gating and transcriptional activation. Our analysis showed that certain Orai1 mutations were clustered in the transmembrane 2 helix surrounding the pore, which is a trigger site for Orai1 channel gating. Analysis of the constitutively open Orai1 mutant channels revealed two fundamental gates that enabled Ca2+ influx: Arginine side chains were displaced so they no longer blocked the pore, and a chain of water molecules formed in the hydrophobic pore region. Together, these results enabled us to identify a cluster of Orai1 mutations that trigger Ca2+ permeation associated with gene transcription and provide a gating mechanism for Orai1.


Assuntos
Membrana Celular/metabolismo , Ativação do Canal Iônico/genética , Proteína ORAI1/genética , Ativação Transcricional/genética , Animais , Arginina/metabolismo , Cálcio/metabolismo , Drosophila melanogaster , Genômica , Células HCT116 , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Doenças Musculares/metabolismo , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Técnicas de Patch-Clamp , Estrutura Secundária de Proteína/genética , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
10.
PeerJ ; 5: e2887, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28133570

RESUMO

Type I restriction-modification enzymes are multisubunit, multifunctional molecular machines that recognize specific DNA target sequences, and their multisubunit organization underlies their multifunctionality. EcoR124I is the archetype of Type I restriction-modification family IC and is composed of three subunit types: HsdS, HsdM, and HsdR. DNA cleavage and ATP-dependent DNA translocation activities are housed in the distinct domains of the endonuclease/motor subunit HsdR. Because the multiple functions are integrated in this large subunit of 1,038 residues, a large number of interdomain contacts might be expected. The crystal structure of EcoR124I HsdR reveals a surprisingly sparse number of contacts between helicase domain 2 and the C-terminal helical domain that is thought to be involved in assembly with HsdM. Only two potential hydrogen-bonding contacts are found in a very small contact region. In the present work, the relevance of these two potential hydrogen-bonding interactions for the multiple activities of EcoR124I is evaluated by analysing mutant enzymes using in vivo and in vitro experiments. Molecular dynamics simulations are employed to provide structural interpretation of the functional data. The results indicate that the helical C-terminal domain is involved in the DNA translocation, cleavage, and ATPase activities of HsdR, and a role in controlling those activities is suggested.

11.
Acta Crystallogr F Struct Biol Commun ; 72(Pt 9): 672-6, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27599856

RESUMO

The HsdR subunit of the type I restriction-modification system EcoR124I is responsible for the translocation as well as the restriction activity of the whole complex consisting of the HsdR, HsdM and HsdS subunits, and while crystal structures are available for the wild type and several mutants, the C-terminal domain comprising approximately 150 residues was not resolved in any of these structures. Here, three fusion constructs with the GFP variant pHluorin developed to overexpress, purify and crystallize the C-terminal domain of HsdR are reported. The shortest of the three encompassed HsdR residues 887-1038 and yielded crystals that belonged to the orthorhombic space group C2221, with unit-cell parameters a = 83.42, b = 176.58, c = 126.03 Å, α = ß = γ = 90.00° and two molecules in the asymmetric unit (VM = 2.55 Å(3) Da(-1), solvent content 50.47%). X-ray diffraction data were collected to a resolution of 2.45 Å.


Assuntos
Desoxirribonucleases de Sítio Específico do Tipo I/química , Proteínas de Escherichia coli/química , Escherichia coli/genética , Proteínas de Fluorescência Verde/química , Subunidades Proteicas/química , Proteínas Recombinantes de Fusão/química , Sequência de Aminoácidos , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Desoxirribonucleases de Sítio Específico do Tipo I/genética , Desoxirribonucleases de Sítio Específico do Tipo I/metabolismo , Escherichia coli/química , Escherichia coli/enzimologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Difração de Raios X
12.
J Phys Chem B ; 120(22): 4867-77, 2016 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-27183467

RESUMO

UNLABELLED: Quantum mechanical calculations using the Marcus equation are applied to compare the electron-transfer probability for two distinct crystal structures of the Escherichia coli protein WrbA, an FMN-dependent NAD(P)H: quinone oxidoreductase, with the bound substrate benzoquinone. The calculations indicate that the position of benzoquinone in a new structure reported here and solved at 1.33 Å resolution is more likely to be relevant for the physiological reaction of WrbA than a previously reported crystal structure in which benzoquinone is shifted by ∼5 Å. Because the true electron-acceptor substrate for WrbA is not yet known, the present results can serve to constrain computational docking attempts with potential substrates that may aid in identifying the natural substrate(s) and physiological role(s) of this enzyme. The approach used here highlights a role for quantum mechanical calculations in the interpretation of protein crystal structures.


Assuntos
Benzoquinonas/química , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Mononucleotídeo de Flavina/química , Teoria Quântica , Proteínas Repressoras/química , Domínio Catalítico , Cristalografia por Raios X , Transporte de Elétrons , Proteínas de Escherichia coli/metabolismo , Estrutura Terciária de Proteína , Proteínas Repressoras/metabolismo
13.
Sci Signal ; 9(412): ra10, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26814231

RESUMO

STIM1 (stromal interaction molecule 1) and Orai proteins are the essential components of Ca(2+) release-activated Ca(2+) (CRAC) channels. We focused on the role of cholesterol in the regulation of STIM1-mediated Orai1 currents. Chemically induced cholesterol depletion enhanced store-operated Ca(2+) entry (SOCE) and Orai1 currents. Furthermore, cholesterol depletion in mucosal-type mast cells augmented endogenous CRAC currents, which were associated with increased degranulation, a process that requires calcium influx. Single point mutations in the Orai1 amino terminus that would be expected to abolish cholesterol binding enhanced SOCE to a similar extent as did cholesterol depletion. The increase in Orai1 activity in cells expressing these cholesterol-binding-deficient mutants occurred without affecting the amount in the plasma membrane or the coupling of STIM1 to Orai1. We detected cholesterol binding to an Orai1 amino-terminal fragment in vitro and to full-length Orai1 in cells. Thus, our data showed that Orai1 senses the amount of cholesterol in the plasma membrane and that the interaction of Orai1 with cholesterol inhibits its activity, thereby limiting SOCE.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Colesterol/metabolismo , Biotinilação , Linhagem Celular , Membrana Celular/metabolismo , Colesterol Oxidase/metabolismo , Dicroísmo Circular , Fenômenos Eletrofisiológicos , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Histamina/metabolismo , Humanos , Mastócitos/metabolismo , Mutação , Proteína ORAI1 , Peptídeos/metabolismo , Mutação Puntual , Estrutura Terciária de Proteína , Transdução de Sinais , Espectrometria de Fluorescência
14.
J Mol Recognit ; 29(2): 70-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26400697

RESUMO

Ligand binding of neutral progesterone, basic propranolol, and acidic warfarin to human α1-acid glycoprotein (AGP) was investigated by Raman spectroscopy. The binding itself is characterized by a uniform conformational shift in which a tryptophan residue is involved. Slight differences corresponding to different contacts of the individual ligands inside the ß-barrel are described. Results are compared with in silico ligand docking into the available crystal structure of deglycosylated AGP using quantum/molecular mechanics. Calculated binding energies are -18.2, -14.5, and -11.5 kcal/mol for warfarin, propranolol, and progesterone, respectively. These calculations are consistent with Raman difference spectroscopy; nevertheless, minor discrepancies in the precise positions of the ligands point to structural differences between deglycosylated and native AGP. Thermal dynamics of AGP with/without bounded warfarin was followed by Raman spectroscopy in a temperature range of 10-95 °C and analyzed by principal component analysis. With increasing temperature, a slight decrease of α-helical content is observed that coincides with an increase in ß-sheet content. Above 45 °C, also ß-strands tend to unfold, and the observed decrease in ß-sheet coincides with an increase of ß-turns accompanied by a conformational shift of the nearby disulfide bridge from high-energy trans-gauche-trans to more relaxed gauche-gauche-trans. This major rearrangement in the vicinity of the bridge is not only characterized by unfolding of the ß-sheet but also by subsequent ligand release. Hereby, ligand binding alters the protein dynamics, and the more rigid protein-ligand complex shows an improved thermal stability, a finding that contributes to the reported chaperone-like function of AGP.


Assuntos
Orosomucoide/química , Orosomucoide/metabolismo , Progesterona/metabolismo , Propranolol/metabolismo , Varfarina/metabolismo , Sítios de Ligação , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Progesterona/química , Propranolol/química , Ligação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Análise Espectral Raman , Termodinâmica , Triptofano/metabolismo , Varfarina/química
15.
Sci Signal ; 8(408): ra131, 2015 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-26696631

RESUMO

The Ca(2+) release-activated Ca(2+) channel mediates Ca(2+) influx in a plethora of cell types, thereby controlling diverse cellular functions. The channel complex is composed of stromal interaction molecule 1 (STIM1), an endoplasmic reticulum Ca(2+)-sensing protein, and Orai1, a plasma membrane Ca(2+) channel. Channels composed of STIM1 and Orai1 mediate Ca(2+) influx even at low extracellular Ca(2+) concentrations. We investigated whether the activity of Orai1 adapted to different environmental Ca(2+) concentrations. We used homology modeling and molecular dynamics simulations to predict the presence of an extracellular Ca(2+)-accumulating region (CAR) at the pore entrance of Orai1. Furthermore, simulations of Orai1 proteins with mutations in CAR, along with live-cell experiments, or simulations and electrophysiological recordings of the channel with transient, electrostatic loop3 interacting with loop1 (the site of CAR) determined that CAR enhanced Ca(2+) permeation most efficiently at low external Ca(2+) concentrations. Consistent with these results, cells expressing Orai1 CAR mutants exhibited impaired gene expression stimulated by the Ca(2+)-activated transcription factor nuclear factor of activated T cells (NFAT). We propose that the Orai1 channel architecture with a close proximity of CAR to the selectivity filter, which enables Ca(2+)-selective ion permeation, enhances the local extracellular Ca(2+) concentration to maintain Ca(2+)-dependent gene regulation even in environments with relatively low Ca(2+)concentrations.


Assuntos
Cálcio/metabolismo , Permeabilidade da Membrana Celular/fisiologia , Proteínas de Drosophila , Proteínas de Membrana , Transcrição Gênica/fisiologia , Animais , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Células HEK293 , Humanos , Transporte de Íons/fisiologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteína ORAI1 , Estrutura Secundária de Proteína , Molécula 1 de Interação Estromal
16.
Proteins ; 83(9): 1677-86, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26138376

RESUMO

The extrinsic proteins of photosystem II of higher plants and green algae PsbO, PsbP, PsbQ, and PsbR are essential for stable oxygen production in the oxygen evolving center. In the available X-ray crystallographic structure of higher plant PsbQ residues S14-Y33 are missing. Building on the backbone NMR assignment of PsbQ, which includes this "missing link", we report the extended resonance assignment including side chain atoms. Based on nuclear Overhauser effect spectra a high resolution solution structure of PsbQ with a backbone RMSD of 0.81 Å was obtained from torsion angle dynamics. Within the N-terminal residues 1-45 the solution structure deviates significantly from the X-ray crystallographic one, while the four-helix bundle core found previously is confirmed. A short α-helix is observed in the solution structure at the location where a ß-strand had been proposed in the earlier crystallographic study. NMR relaxation data and unrestrained molecular dynamics simulations corroborate that the N-terminal region behaves as a flexible tail with a persistent short local helical secondary structure, while no indications of forming a ß-strand are found.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Simulação de Dinâmica Molecular , Complexo de Proteína do Fotossistema II/química , Proteínas de Plantas/química , Estrutura Secundária de Proteína , Sequência de Aminoácidos , Cristalografia por Raios X , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Soluções , Spinacia oleracea/genética , Spinacia oleracea/metabolismo , Termodinâmica
17.
PLoS One ; 10(6): e0128700, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26039067

RESUMO

Type I restriction-modification enzymes are multifunctional heteromeric complexes with DNA cleavage and ATP-dependent DNA translocation activities located on motor subunit HsdR. Functional coupling of DNA cleavage and translocation is a hallmark of the Type I restriction systems that is consistent with their proposed role in horizontal gene transfer. DNA cleavage occurs at nonspecific sites distant from the cognate recognition sequence, apparently triggered by stalled translocation. The X-ray crystal structure of the complete HsdR subunit from E. coli plasmid R124 suggested that the triggering mechanism involves interdomain contacts mediated by ATP. In the present work, in vivo and in vitro activity assays and crystal structures of three mutants of EcoR124I HsdR designed to probe this mechanism are reported. The results indicate that interdomain engagement via ATP is indeed responsible for signal transmission between the endonuclease and helicase domains of the motor subunit. A previously identified sequence motif that is shared by the RecB nucleases and some Type I endonucleases is implicated in signaling.


Assuntos
Trifosfato de Adenosina/química , Desoxirribonucleases de Sítio Específico do Tipo I/química , Proteínas de Escherichia coli/química , Escherichia coli/genética , Exodesoxirribonuclease V/química , Subunidades Proteicas/química , Trifosfato de Adenosina/metabolismo , Cristalografia por Raios X , Clivagem do DNA , DNA Bacteriano , Desoxirribonucleases de Sítio Específico do Tipo I/genética , Desoxirribonucleases de Sítio Específico do Tipo I/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Exodesoxirribonuclease V/genética , Exodesoxirribonuclease V/metabolismo , Expressão Gênica , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Plasmídeos/química , Plasmídeos/metabolismo , Sinais Direcionadores de Proteínas , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transdução de Sinais
18.
Biomol NMR Assign ; 9(2): 341-6, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25903141

RESUMO

PsbP (23 kDa) is an extrinsic eukaryotic protein of photosystem II found in the thylakoid membrane of higher plants and green algae. It has been proven to be indispensable for proper functioning of the oxygen evolving complex. By interaction with other extrinsic proteins (PsbQ, PsbO and PsbR), it modulates the concentration of two cofactors of the water splitting reaction, Ca(2+) and Cl(-). The crystallographic structure of PsbP from Spinacia oleracea lacks the N-terminal part as well as two inner regions which were modelled as loops. Those unresolved parts are believed to be functionally crucial for the binding of PsbP to the thylakoid membrane. In this NMR study we report (1)H, (15)N and (13)C resonance assignments of the backbone and side chain atoms of the PsbP protein. Based on these data, an estimate of the secondary structure has been made. The structural motifs found fit the resolved parts of the crystallographic structure very well. In addition, the complete assignment set provides preliminary insight into the dynamic regions.


Assuntos
Complexo de Proteína do Fotossistema II/química , Proteínas de Plantas/química , Espectroscopia de Prótons por Ressonância Magnética , Spinacia oleracea/química , Sequência de Aminoácidos , Cristalografia por Raios X , Dados de Sequência Molecular , Estrutura Secundária de Proteína
19.
Biochim Biophys Acta ; 1848(5): 1183-95, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25687974

RESUMO

Potassium ion (K+) uptake in yeast is mediated mainly by the Trk1/2 proteins that enable cells to survive on external K+ concentration as low as a few µM. Fungal Trks are related to prokaryotic TRK and Ktr and plant HKT K+ transport systems. Overall sequence similarity is very low, thus requiring experimental verification of homology models. Here a refined structural model of the Saccharomyces cerevisiae Trk1 is presented that was obtained by combining homology modeling, molecular dynamics simulation and experimental verification through functional analysis of mutants. Structural models and experimental results showed that glycines within the selectivity filter, conserved among the K-channel/transporter family, are not only important for protein function, but are also required for correct folding/membrane targeting. A conserved aspartic acid in the PA helix (D79) and a lysine in the M2D helix (K1147) were proposed earlier to interact. Our results suggested individual roles of these residues in folding, structural integrity and function. While mutations of D79 completely abolished protein folding, mutations at position 1147 were tolerated to some extent. Intriguingly, a secondary interaction of D79 with R76 could enhance folding/stability of Trk1 and enable a fraction of Trk1[K1147A] to fold. The part of the ion permeation path containing the selectivity filter is shaped similar to that of ion channels. However below the selectivity filter it is obstructed or regulated by a proline containing loop. The presented model could provide the structural basis for addressing the long standing question if Trk1 is a passive or active ion-translocation system.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Membrana Celular/metabolismo , Ativação do Canal Iônico , Potássio/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Ácido Aspártico , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Membrana Celular/química , Permeabilidade da Membrana Celular , Biologia Computacional , Sequência Conservada , Glicina , Cinética , Lisina , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Conformação Proteica , Dobramento de Proteína , Estabilidade Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Relação Estrutura-Atividade
20.
BMC Bioinformatics ; 16: 28, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25627923

RESUMO

BACKGROUND: ß-N-Acetylhexosaminidase (GH20) from the filamentous fungus Talaromyces flavus, previously identified as a prominent enzyme in the biosynthesis of modified glycosides, lacks a high resolution three-dimensional structure so far. Despite of high sequence identity to previously reported Aspergillus oryzae and Penicilluim oxalicum ß-N-acetylhexosaminidases, this enzyme tolerates significantly better substrate modification. Understanding of key structural features, prediction of effective mutants and potential substrate characteristics prior to their synthesis are of general interest. RESULTS: Computational methods including homology modeling and molecular dynamics simulations were applied to shad light on the structure-activity relationship in the enzyme. Primary sequence analysis revealed some variable regions able to influence difference in substrate affinity of hexosaminidases. Moreover, docking in combination with consequent molecular dynamics simulations of C-6 modified glycosides enabled us to identify the structural features required for accommodation and processing of these bulky substrates in the active site of hexosaminidase from T. flavus. To access the reliability of predictions on basis of the reported model, all results were confronted with available experimental data that demonstrated the principal correctness of the predictions as well as the model. CONCLUSIONS: The main variable regions in ß-N-acetylhexosaminidases determining difference in modified substrate affinity are located close to the active site entrance and engage two loops. Differences in primary sequence and the spatial arrangement of these loops and their interplay with active site amino acids, reflected by interaction energies and dynamics, account for the different catalytic activity and substrate specificity of the various fungal and bacterial ß-N-acetylhexosaminidases.


Assuntos
Biologia Computacional , Talaromyces/enzimologia , beta-N-Acetil-Hexosaminidases/química , beta-N-Acetil-Hexosaminidases/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Glicosilação , Cinética , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Filogenia , Reprodutibilidade dos Testes , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...